资源类型

期刊论文 231

年份

2023 19

2022 31

2021 15

2020 10

2019 13

2018 10

2017 13

2016 8

2015 13

2014 11

2013 5

2012 12

2011 9

2010 5

2009 8

2008 9

2007 11

2006 7

2005 3

2004 8

展开 ︾

关键词

模式识别 6

模糊 2

神经网络 2

秦巴山脉区域 2

3S 1

AR模型 1

BP神经网络 1

COVID-19 1

EPC(engineering procurement construction) 1

IPMT 1

ISO 18186 1

MS-CETSA 1

NARMA模型 1

PIN二极管 1

PPP模式 1

Powell法 1

RBF神经网络 1

TBM 刀盘设计 1

TBM 效率 1

展开 ︾

检索范围:

排序: 展示方式:

Variational mode decomposition based modal parameter identification in civil engineering

Mingjie ZHANG, Fuyou XU

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1082-1094 doi: 10.1007/s11709-019-0537-3

摘要: An out-put only modal parameter identification method based on variational mode decomposition (VMD) is developed for civil structure identifications. The recently developed VMD technique is utilized to decompose the free decay response (FDR) of a structure into to modal responses. A novel procedure is developed to calculate the instantaneous modal frequencies and instantaneous modal damping ratios. The proposed identification method can straightforwardly extract the mode shape vectors using the modal responses extracted from the FDRs at all available sensors on the structure. A series of numerical and experimental case studies are conducted to demonstrate the efficiency and highlight the superiority of the proposed method in modal parameter identification using both free vibration and ambient vibration data. The results of the present method are compared with those of the empirical mode decomposition-based method, and the superiorities of the present method are verified. The proposed method is proved to be efficient and accurate in modal parameter identification for both linear and nonlinear civil structures, including structures with closely spaced modes, sudden modal parameter variation, and amplitude-dependent modal parameters, etc.

关键词: modal parameter identification     variational mode decomposition     civil structure     nonlinear system     closely spaced modes    

Non-convex sparse optimization-based impact force identification with limited vibration measurements

《机械工程前沿(英文)》 2023年 第18卷 第3期 doi: 10.1007/s11465-023-0762-2

摘要: Impact force identification is important for structure health monitoring especially in applications involving composite structures. Different from the traditional direct measurement method, the impact force identification technique is more cost effective and feasible because it only requires a few sensors to capture the system response and infer the information about the applied forces. This technique enables the acquisition of impact locations and time histories of forces, aiding in the rapid assessment of potentially damaged areas and the extent of the damage. As a typical inverse problem, impact force reconstruction and localization is a challenging task, which has led to the development of numerous methods aimed at obtaining stable solutions. The classical 2 regularization method often struggles to generate sparse solutions. When solving the under-determined problem, 2 regularization often identifies false forces in non-loaded regions, interfering with the accurate identification of the true impact locations. The popular 1 sparse regularization, while promoting sparsity, underestimates the amplitude of impact forces, resulting in biased estimations. To alleviate such limitations, a novel non-convex sparse regularization method that uses the non-convex 12 penalty, which is the difference of the 1 and 2 norms, as a regularizer, is proposed in this paper. The principle of alternating direction method of multipliers (ADMM) is introduced to tackle the non-convex model by facilitating the decomposition of the complex original problem into easily solvable subproblems. The proposed method named 12-ADMM is applied to solve the impact force identification problem with unknown force locations, which can realize simultaneous impact localization and time history reconstruction with an under-determined, sparse sensor configuration. Simulations and experiments are performed on a composite plate to verify the identification accuracy and robustness with respect to the noise of the 12-ADMM method. Results indicate that compared with other existing regularization methods, the 12-ADMM method can simultaneously reconstruct and localize impact forces more accurately, facilitating sparser solutions, and yielding more accurate results.

关键词: impact force identification     inverse problem     sparse regularization     under-determined condition     alternating direction method of multipliers    

Subsurface damage pattern and formation mechanism of monocrystalline -GaO in grinding process

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0677-3

摘要: Monocrystalline beta-phase gallium oxide (β-Ga2O3) is a promising ultrawide bandgap semiconductor material. However, the deformation mechanism in ultraprecision machining has not yet been revealed. The aim of this study is to investigate the damage pattern and formation mechanism of monocrystalline β-Ga2O3 in different grinding processes. Transmission electron microscopy was used to observe the subsurface damage in rough, fine, and ultrafine grinding processes. Nanocrystals and stacking faults existed in all three processes, dislocations and twins were observed in the rough and fine grinding processes, cracks were also observed in the rough grinding process, and amorphous phase were only present in the ultrafine grinding process. The subsurface damage thickness of the samples decreased with the reduction in the grit radius and the grit depth of cut. Subsurface damage models for grinding process were established on the basis of the grinding principle, revealing the mechanism of the mechanical effect of grits on the damage pattern. The formation of nanocrystals and amorphous phase was related to the grinding conditions and material characteristics. It is important to investigate the ultraprecision grinding process of monocrystalline β-Ga2O3. The results in this work are supposed to provide guidance for the damage control of monocrystalline β-Ga2O3 grinding process.

关键词: monocrystalline beta-phase gallium oxide     grinding process     subsurface damage     nanocrystals     amorphous phase    

The research on structural damage identification using rough set and integrated neural network

Juelong LI, Hairui LI, Jianchun XING, Qiliang YANG

《机械工程前沿(英文)》 2013年 第8卷 第3期   页码 305-310 doi: 10.1007/s11465-013-0259-5

摘要:

A huge amount of information and identification accuracy in large civil engineering structural damage identification has not been addressed yet. To efficiently solve this problem, a new damage identification method based on rough set and integrated neural network is first proposed. In brief, rough set was used to reduce attributes so as to decrease spatial dimensions of data and extract effective features. And then the reduced attributes will be put into the sub-neural network. The sub-neural network can give the preliminary diagnosis from different aspects of damage. The decision fusion network will give the final damage identification results. The identification examples show that this method can simplify the redundant information to reduce the neural network model, making full use of the range of information to effectively improve the accuracy of structural damage identification.

关键词: rough set     integrated neural network     damage identification     decision making fusion    

Characterization of hidden rules linking symptoms and selection of acupoint using an artificial neural network model

Won-Mo Jung, In-Soo Park, Ye-Seul Lee, Chang-Eop Kim, Hyangsook Lee, Dae-Hyun Hahm, Hi-Joon Park, Bo-Hyoung Jang, Younbyoung Chae

《医学前沿(英文)》 2019年 第13卷 第1期   页码 112-120 doi: 10.1007/s11684-017-0582-z

摘要: Comprehension of the medical diagnoses of doctors and treatment of diseases is important to understand the underlying principle in selecting appropriate acupoints. The pattern recognition process that pertains to symptoms and diseases and informs acupuncture treatment in a clinical setting was explored. A total of 232 clinical records were collected using a Charting Language program. The relationship between symptom information and selected acupoints was trained using an artificial neural network (ANN). A total of 11 hidden nodes with the highest average precision score were selected through a tenfold cross-validation. Our ANN model could predict the selected acupoints based on symptom and disease information with an average precision score of 0.865 (precision, 0.911; recall, 0.811). This model is a useful tool for diagnostic classification or pattern recognition and for the prediction and modeling of acupuncture treatment based on clinical data obtained in a real-world setting. The relationship between symptoms and selected acupoints could be systematically characterized through knowledge discovery processes, such as pattern identification.

关键词: acupuncture     indication     neural network     pattern identification     prediction    

SHIFTING TO A RECOMMENDED DIETARY PATTERN COULD PROMOTE SUSTAINABLE DEVELOPMENT OF THE ENVIRONMENT AND

《农业科学与工程前沿(英文)》 2023年 第10卷 第1期   页码 73-82 doi: 10.15302/J-FASE-2023489

摘要:

● Shifting from the existing dietary patterns to the alternative recommended dietary pattern could enhance the sustainable development of environment and human health.

关键词: CHNS data     cluster analysis     dietary patterns     sustainable development    

The influence of hand hole on the ultimate strength and crack pattern of shield tunnel segment joints

Shaochun WANG, Xi JIANG, Yun BAI

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1200-1213 doi: 10.1007/s11709-019-0546-2

摘要: With the shield tunnel going deeper and deeper, the circumferential axial force becomes the governing factor rather than the bending moment. The hand hole acts as a weak point and initial damage in the segment joint especially when the circumferential axial force is extremely high. Despite the wide application of steel fiber or synthetic fiber in the tunneling, limited researches focus on the structural responses of segment joint with macro structural synthetic fiber (MSSF). In this paper, a 1:2 reduced-scale experiment was conducted to study the structural performance of the segment joint with different types of hand holes under ultra-high axial force. Special attention is paid to failure mode and structural performance (bearing capacity, deformation, cracking, and toughness). Moreover, segment joints with MSSF are also tested to evaluate the effects of MSSF on the failure mode and structural performance of the segment joints. The experiment results show that the hand hole becomes the weakest point of the segment joint under ultra-high axial force. A \ /-type crack pattern is always observed before the final failure of the segment joints. Different types and sizes of the hand hole have different degree of influences on the structural behavior of segment joints. The segment joint with MSSF shows higher ultimate bearing capacity and toughness compared to segment joint with common concrete. Besides, the MSSF improves the initial cracking load and anti-spallling resistance of the segment joint.

关键词: shield tunneling     structural synthetic fiber concrete     hand hole     segment joint     ultimate bearing capacity     crack pattern    

模糊中心聚类的模式识别学习方法

曾黄麟,袁慧,刘小芳

《中国工程科学》 2004年 第6卷 第11期   页码 33-37

摘要:

基于一个约束条件下的非线性规划问题的优化计算思想,把模糊中心聚类中计算输入矢量与中心的距离来实现聚类作为一种优化计算问题,证明了模糊中心聚类方法,取一个适当的属函数,其聚类中心vi为模糊聚类中心价值函数的极小值,推导出了基于模糊中心聚类的模式识别的无导师递推学习方法,提出了模糊中心聚类模式分类神经网络结构,该网络可以实现并行数据处理和模式分类的软划分和硬划分。

关键词: 模糊     中心聚类     模式识别     神经网络    

Distinct gene expression pattern of mutations coordinated by target repression and promoter hypermethylation

《医学前沿(英文)》 2022年 第16卷 第4期   页码 627-636 doi: 10.1007/s11684-020-0815-4

摘要: Runt-related transcription factor 1 (RUNX1) is an essential regulator of normal hematopoiesis. Its dysfunction, caused by either fusions or mutations, is frequently reported in acute myeloid leukemia (AML). However, RUNX1 mutations have been largely under-explored compared with RUNX1 fusions mainly due to their elusive genetic characteristics. Here, based on 1741 patients with AML, we report a unique expression pattern associated with RUNX1 mutations in AML. This expression pattern was coordinated by target repression and promoter hypermethylation. We first reanalyzed a joint AML cohort that consisted of three public cohorts and found that RUNX1 mutations were mainly distributed in the Runt domain and almost mutually exclusive with NPM1 mutations. Then, based on RNA-seq data from The Cancer Genome Atlas AML cohort, we developed a 300-gene signature that significantly distinguished the patients with RUNX1 mutations from those with other AML subtypes. Furthermore, we explored the mechanisms underlying this signature from the transcriptional and epigenetic levels. Using chromatin immunoprecipitation sequencing data, we found that RUNX1 target genes tended to be repressed in patients with RUNX1 mutations. Through the integration of DNA methylation array data, we illustrated that hypermethylation on the promoter regions of RUNX1-regulated genes also contributed to dysregulation in RUNX1-mutated AML. This study revealed the distinct gene expression pattern of RUNX1 mutations and the underlying mechanisms in AML development.

关键词: RUNX1     gene mutation     acute myeloid leukemia     transcriptional repression     DNA methylation    

Mechanical design, modeling, and identification for a novel antagonistic variable stiffness dexterous

《机械工程前沿(英文)》 2022年 第17卷 第3期 doi: 10.1007/s11465-022-0691-5

摘要: This study traces the development of dexterous hand research and proposes a novel antagonistic variable stiffness dexterous finger mechanism to improve the safety of dexterous hand in unpredictable environments, such as unstructured or man-made operational errors through comprehensive consideration of cost, accuracy, manufacturing, and application. Based on the concept of mechanical passive compliance, which is widely implemented in robots for interactions, a finger is dedicated to improving mechanical robustness. The finger mechanism not only achieves passive compliance against physical impacts, but also implements the variable stiffness actuator principle in a compact finger without adding supererogatory actuators. It achieves finger stiffness adjustability according to the biologically inspired stiffness variation principle of discarding some mobilities to adjust stiffness. The mechanical design of the finger and its stiffness adjusting methods are elaborated. The stiffness characteristics of the finger joint and the actuation unit are analyzed. Experimental results of the finger joint stiffness identification and finger impact tests under different finger stiffness presets are provided to verify the validity of the model. Fingers have been experimentally proven to be robust against physical impacts. Moreover, the experimental part verifies that fingers have good power, grasping, and manipulation performance.

关键词: multifingered hand     mechanism design     robot safety     variable stiffness actuator    

面向语义的精简化多关系频繁模式发现方法

杨炳儒,张伟,钱榕

《中国工程科学》 2008年 第10卷 第9期   页码 47-53

摘要:

多关系频繁模式发现能够直接从复杂结构化数据中发现涉及多个关系的复杂频繁模式,避免了传统方法的局限。有别于主流基于归纳逻辑程序设计技术的方法,提出了基于合取查询包含关系的面向语义的精简化多关系频繁模式发现方法,具有理论与技术基础的新颖性,解决了两种语义冗余问题。实验表明,该方法在可理解性、功能、效率以及可扩展性方面具有优势。

关键词: 多关系数据挖掘     频繁模式发现     合取查询     精简化模式    

Damage identification in connections of moment frames using time domain responses and an optimization

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 851-866 doi: 10.1007/s11709-021-0739-3

摘要: Damage is defined as changes to the material and/or geometric properties of a structural system, comprising changes to the boundary conditions and system connectivity, adversely affecting the system’s performance. Inspecting the elements of structures, particularly critical components, is vital to evaluate the structural lifespan and safety. In this study, an optimization-based method for joint damage identification of moment frames using the time-domain responses is introduced. The beam-to-column connection in a metallic moment frame structure is modeled by a zero-length rotational spring at both ends of the beam element. For each connection, an end-fixity factor is specified, which changes between 0 and 1. Then, the problem of joint damage identification is converted to a standard optimization problem. An objective function is defined using the nodal point accelerations extracted from the damaged structure and an analytical model of the structure in which the nodal accelerations are obtained using the Newmark procedure. The optimization problem is solved by an improved differential evolution algorithm (IDEA) for identifying the location and severity of the damage. To assess the capability of the proposed method, two numerical examples via different damage scenarios are considered. Then, a comparison between the proposed method and the existing damage identification method is provided. The outcomes reveal the high efficiency of the proposed method for finding the severity and location of joint damage considering noise effects.

关键词: damage identification     beam-to-column connection     time-domain response     optimization    

Inverse identification of the mechanical parameters of a pipeline hoop and analysis of the effect of

Ye GAO, Wei SUN

《机械工程前沿(英文)》 2019年 第14卷 第3期   页码 358-368 doi: 10.1007/s11465-019-0539-9

摘要: To create a dynamic model of a pipeline system effectively and analyze its vibration characteristics, the mechanical characteristic parameters of the pipeline hoop, such as support stiffness and damping under dynamic load, must be obtained. In this study, an inverse method was developed by utilizing measured vibration data to identify the support stiffness and damping of a hoop. The procedure of identifying such parameters was described based on the measured natural frequencies and amplitudes of the frequency response functions (FRFs) of a pipeline system supported by two hoops. A dynamic model of the pipe-hoop system was built with the finite element method, and the formulas for solving the FRF of the pipeline system were provided. On the premise of selecting initial values reasonably, an inverse identification algorithm based on sensitivity analysis was proposed. A case study was performed, and the mechanical parameters of the hoop were identified using the proposed method. After introducing the identified values into the analysis model, the reliability of the identification results was validated by comparing the predicted and measured FRFs of the pipeline. Then, the developed method was used to identify the support stiffness and damping of the pipeline hoop under different preloads of the bolts. The influence of preload was also discussed. Results indicated that the support stiffness and damping of the hoop exhibited frequency-dependent characteristics. When the preloads of the bolts increased, the support stiffness increased, whereas the support damping decreased.

关键词: inverse identification     pipeline hoop     frequency response function     mechanical parameters     preload    

F-FDG-PET glucose hypometabolism pattern in patients with epileptogenic hypothalamic hamartoma

《医学前沿(英文)》 2021年 第15卷 第6期   页码 913-921 doi: 10.1007/s11684-021-0874-1

摘要: Epileptogenic hypothalamic hamartoma is characterized by intractable gelastic seizures. A systematic analysis of the overall brain metabolic pattern in patients with hypothalamic hamartoma (HH) could facilitate the understanding of the epileptic brain network and the associated brain damage effects of HH. In this study, we retrospectively evaluated 27 patients with epileptogenic HH (8 female patients; age, 2–33 years) by using 18F-fluorodeoxyglucose-positron emission tomography. The correlations among tomography result, seizure type, sex, and structural magnetic resonance imaging were assessed. Whole metabolic patterns and voxel-based morphometry findings were assessed by group analysis with healthy controls. Assessment of the whole metabolic pattern in patients with HH revealed several regional metabolic reductions in the cerebrum and an overall metabolic reduction in the cerebellum. In addition, areas showing hypometabolism in the neocortex were more widely distributed ipsilaterally than contralaterally to the HH. Reductions in glucose metabolism and gray matter volume in the neocortex were predominant ipsilateral to the HH. In conclusion, the glucose hypometabolism pattern in patients with epileptogenic HH involved the neocortex, subcortical regions, and cerebellum. The characteristics of glucose hypometabolism differed across seizure type and sex. Reductions in glucose metabolism and structural changes may be based on different mechanisms, but both are likely to occur ipsilateral to the HH in the neocortex. We hypothesized that the dentato-rubro-thalamic tract and cerebro-ponto-cerebellar tract, which are responsible for intercommunication between the cerebral cortex, subcortical regions, and cerebellar regions, may be involved in a pathway related to seizure propagation, particularly gelastic seizures, in patients with HH.

关键词: hypothalamic hamartoma     gelastic seizure     fluorodeoxyglucose-positron emission tomography     voxel-based morphometry    

A super-element approach for structural identification in time domain

LI Jie, ZHAO Xin

《机械工程前沿(英文)》 2006年 第1卷 第2期   页码 215-221 doi: 10.1007/s11465-006-0004-4

摘要: For most time-domain identification methods, a complete measurement for unique identification results is required for structural responses. However, the number of transducers is commonly far less than the number of structural degrees of freedom (DOFs) in practical applications, and thus make the time-domain identification methods rarely feasible for practical systems. A super-element approach is proposed in this study to identify the structural parameters of a large-scale structure in the time domain. The most interesting feature of the proposed super-element approach is its divide-and-conquer ability, which can be applied to identify large-scale structures using a relatively small number of transducers. The super-element model used for time domain identification is first discussed in this study. Then a parameterization procedure based on the sensitivities of response forces is introduced to establish the identification equations of super-elements. Some principles are suggested on effective decomposing of the whole structure into super-elements for identification purposes. Numerical simulations are conducted at the end of this study. The numerical results show that all structural parameters can be identified using a relatively small number of transducers, and the computational time can also be greatly shortened.

关键词: numerical     effective decomposing     parameterization procedure     divide-and-conquer ability     time-domain identification    

标题 作者 时间 类型 操作

Variational mode decomposition based modal parameter identification in civil engineering

Mingjie ZHANG, Fuyou XU

期刊论文

Non-convex sparse optimization-based impact force identification with limited vibration measurements

期刊论文

Subsurface damage pattern and formation mechanism of monocrystalline -GaO in grinding process

期刊论文

The research on structural damage identification using rough set and integrated neural network

Juelong LI, Hairui LI, Jianchun XING, Qiliang YANG

期刊论文

Characterization of hidden rules linking symptoms and selection of acupoint using an artificial neural network model

Won-Mo Jung, In-Soo Park, Ye-Seul Lee, Chang-Eop Kim, Hyangsook Lee, Dae-Hyun Hahm, Hi-Joon Park, Bo-Hyoung Jang, Younbyoung Chae

期刊论文

SHIFTING TO A RECOMMENDED DIETARY PATTERN COULD PROMOTE SUSTAINABLE DEVELOPMENT OF THE ENVIRONMENT AND

期刊论文

The influence of hand hole on the ultimate strength and crack pattern of shield tunnel segment joints

Shaochun WANG, Xi JIANG, Yun BAI

期刊论文

模糊中心聚类的模式识别学习方法

曾黄麟,袁慧,刘小芳

期刊论文

Distinct gene expression pattern of mutations coordinated by target repression and promoter hypermethylation

期刊论文

Mechanical design, modeling, and identification for a novel antagonistic variable stiffness dexterous

期刊论文

面向语义的精简化多关系频繁模式发现方法

杨炳儒,张伟,钱榕

期刊论文

Damage identification in connections of moment frames using time domain responses and an optimization

期刊论文

Inverse identification of the mechanical parameters of a pipeline hoop and analysis of the effect of

Ye GAO, Wei SUN

期刊论文

F-FDG-PET glucose hypometabolism pattern in patients with epileptogenic hypothalamic hamartoma

期刊论文

A super-element approach for structural identification in time domain

LI Jie, ZHAO Xin

期刊论文